An Extract from Taxodium Distichum Targets Hemagglutinin- and Neuraminidase-related Activities of Influenza Virus in Vitro

Chung-Fan Hsieh^{1*}, Jin-Yuan Ho¹, Chwan-Fwu Lin², Chun-Hsun Huang², Jim-Tong Horng¹

^{1.} Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, ^{2.} Department of Cosmetic Science, Chang Gung University of Science and Technology

Background/Objective

Taxodium distichum Rich is a popular garden tree, originally indigenous from eastern United States through Mexico to Guatemala where it has been used as a folk medicine to treat inflammation and infection. However, T. distichum has not been described as a traditional medicine to treat influenza viruses. Influenza virus remains an emerging virus and causes pandemics with high levels of fatality. We aimed to identify new plant sources of anti-influenza virus agents.

Method

The EC50 of water extract of T. distichum stems (TDSWex) was shown antiviral efficacy against various strains of human influenza A and B viruses. We observed that the synthesis of viral RNA and protein by western blot and reverse transcription – quantitative PCR (RT-qPCR). The time-of-addition assay suggested that TDSWex inhibited some steps of viral replication. In the hemagglutination inhibition assay and the NA assay showed the antiviral mechanism of TDSWex.

Result

The EC50 of TDSWex was 0.051 ± 0.024 mg/mL against influenza virus A/WSN/33. TDSWex had excellent antiviral efficacy against various strains of human influenza A and B viruses, particularly oseltamivir-resistant clinical isolates and an H1N1pdm strain. We observed that the synthesis of viral RNA and protein were inhibited in the presence of TDSWex. The results of the time-of-addition assay suggested that TDSWex inhibited viral entry and budding. In the hemagglutination inhibition assay, TDSWex inhibited the hemagglutination of red blood cells, implying that the extract targeted HA-related functions such as viral entry. In the attachment and penetration assay, TDSWex showed antiviral activity with EC50s of 0.045 \pm 0.026 and 0.012 \pm 0.003 mg/mL, respectively. We further confirmed that viral budding was blocked by TDSWex.

Conclusion

We conclude that TDSWex has bimodal activities against both viral entry and budding.